VLBI2010 Project for Geodesy and Astrometry

Arthur Niell The VLBI2010 Committee The Broadband Development Team

VLBI2010 Committee

Bill Petrachenko¹ (chair), Arthur Niell², Dirk Behrend³, Brian Corey², Johannes Böhm⁴, Patrick Charlot⁵, Arnaud Collioud⁵, John Gipson³,
Rüdiger Haas⁶, Thomas Hobiger⁷, Yasuhiro Koyama⁷, Dan MacMillan³,
Zinovy Malkin⁸, Tobias Nilsson⁶, Andrea Pany⁴, Gino Tuccari⁹,
Alan Whitney², Jörg Wresnik⁴

¹Natural Resources Canada, Canada
 ²Haystack Observatory, Massachusetts Institute of Technology, USA
 ³NVI, Inc./Goddard Space Flight Center, USA
 ⁴Institute of Geodesy and Geophysics, University of Technology, Vienna, Austria
 ⁵Bordeaux Observatory, France
 ⁶Onsala Space Observatory, Chalmers University of Technology, Sweden
 ⁷Kashima Space Research Center, NICT, Japan
 ⁸Pulkovo Observatory, Russia
 ⁹Radio Astronomy Institute, Italian National Astrophysical Institute, Italy

Broadband Delay Team

Bruce Whittier¹, Mike Titus¹, Jason SooHoo¹,
Dan Smythe¹, Alan Rogers¹, Jay Redmond²,
Mike Poirier¹, Arthur Niell¹, Chuck Kodak³,
Alan Hinton¹, Ed Himwich³, Skip Gordon²,
Mark Evangelista², Irv Diegel², Brian Corey¹,
Tom Clark³, and Chris Beaudoin ¹

¹ MIT Haystack Observatory ² HTSI, Inc ³ GSFC/NVI

Special thanks to Sandy Weinreb and Hamdi Mani

VLBI2010 Recommendations

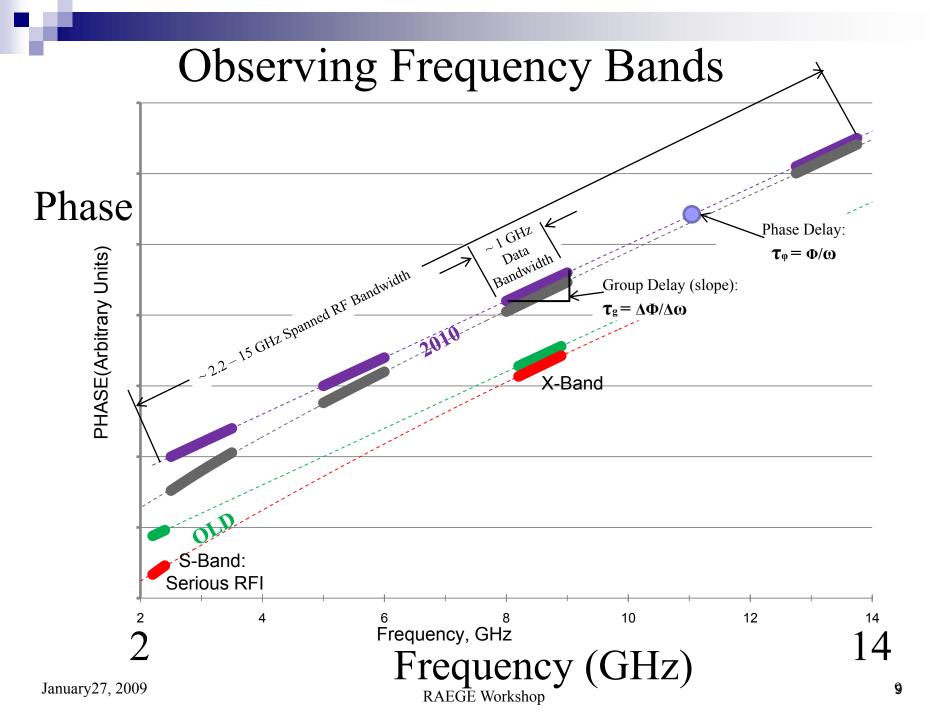
- I-mm position accuracy on global scales
- Continuous measurements for time series of station positions and Earth orientation parameters
- Turnaround time to initial geodetic results of less than 24 hours

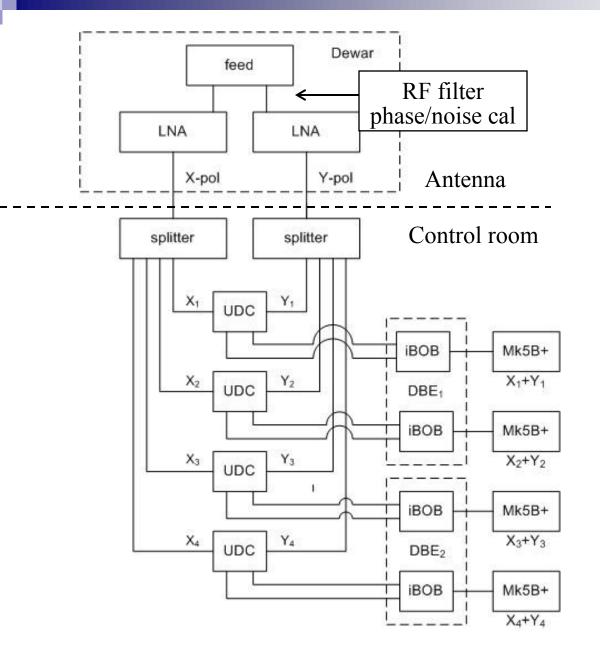
Principal VLBI2010 Actions

- Numerical simulations
- Proof-of-Concept Development
- Progress report (through end of 2008)
 Completed (last week!)
 - □ Available soon on IVS web site

http://ivscc.gsfc.nasa.gov

Numerical Simulation Innovations

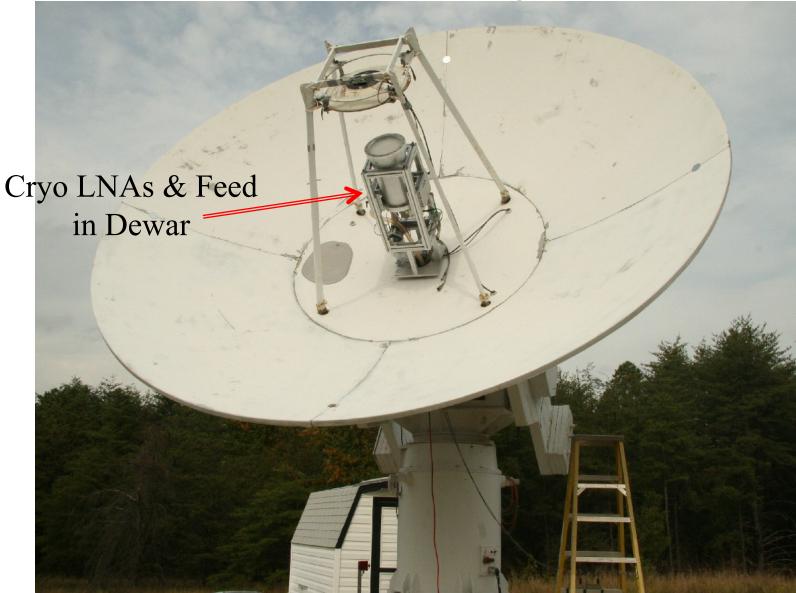

- More accurate atmosphere model that includes turbulence properties
- New approach to scheduling observations within a day
- Evaluation of effect of source structure


Recommendations from Simulations

- Observe as many sources as possible per hour.
- Antenna diameter 12 m or greater
- Antenna slew rates
 - □ if only one antenna on site, higher than 10 /sec in az and 3 /sec in el
 - □ if possibly two antennas on site, ~5 /sec in az and 1.5 /sec in el
- Initially the frequency range should be 2.2 GHz to ~14 GHz.

Proof-of-Concept Development

- Develop the instrumentation to implement the broadband delay system as recommended by the V2C in the IVS WG3 Report
- Mount the equipment on two existing antennas
 Westford 18m antenna, Massachusetts
 MV-3 5m antenna, Washington, D.C.
 Make observations to demonstrate that broadbar
- Make observations to demonstrate that broadband delay can be effectively used


Feed and LNAs cooled to ~20K Both senses of linear polarization used

Odd channels from each pol'n for one band output to each Mk5B+.

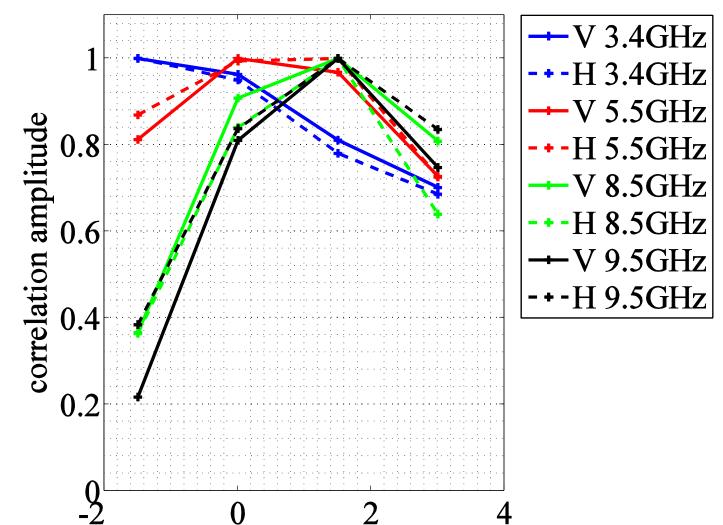
2 gigabits/sec recorded on each Mk5B+.

Total data rate: 8 gbps

MV-3 5M Antenna @ GGAO

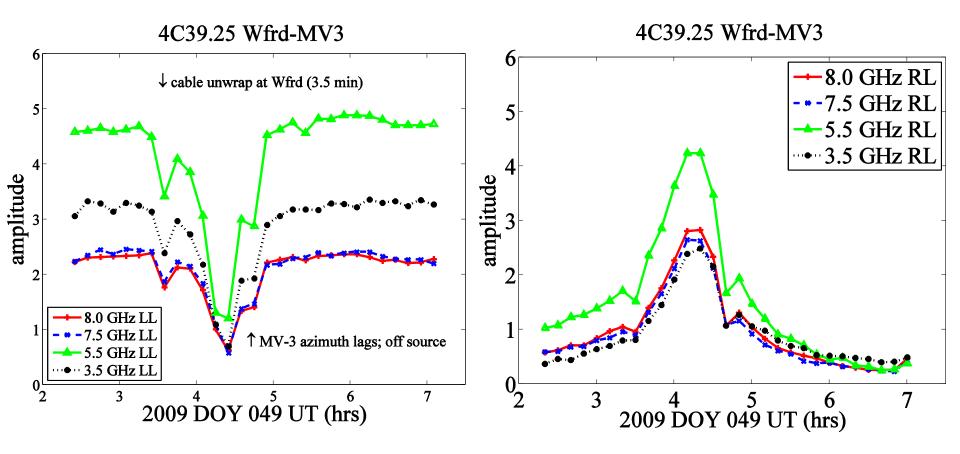
8 gigabit/sec LOs and back end

Proof of Concept System


New equipment
 Up Down Converter
 New phase cal generator
 Digital back end (DBE1 based on iBOB)
 Mark5B+

Recent Results

Westford focus setting measurement
 Test sessions


 Six hours with four bands identical frequencies
 Five hours with bands contiguous Five hours on 4C39.25 polarization test

Westford focus measurement

focus

Polarization test

Proof of Concept System

- Problems/challenges encountered □ RFI from TV at 500 MHz saturated LNAs ■ High-pass filter: > 3.1 GHz (cooled) Protection diodes on LNA leads Controlling four signal chains at two sites Scripts developed for setting frequencies, levels □ Phase cal processing in correlator • 5 MHz spacing and 32 MHz channel bandwidth
 - "Only software"; fixed

Proof of Concept System Status

	Current	Next
Feed	Lindgren	Eleven?
RF filter	>3.1 GHz	\geq 2.2 GHz
Phase cal	S/X pcal	"digital" pcal
DBE	DBE1(iBOB)	DBE2(ROACH)
Recorder	Mk5B+	Mk5C
Correlator	Mk4 (hardware)	Software (DiFX)

Ŋ9

19

VLBI2010 Broadband System **On the antenna** – cooled to ~20K Feed **RF** filters Phase cal and noise diode injection Low noise amplifiers Send RF signals to the control room by optical fiber In control room Splitters to 4 bands (each polarization) Flexible local oscillators Digital back ends Recorders or network connection

January 27, 2009

RAEGE Workshop

VLBI2010 Broadband System Characteristics

On the antenna – cooled to ~20K

Feed:2 to 18 GHzRF filters:>3.1 GHz(falls off slowly above ~6 GHz)Low noise amplifiers:1 GHz to >12 GHz

In control room:

Flexible local oscillator (UpDown Converters):

1 to 13 GHz using 512 MHz Nyquist Zone filters 30 to 60 dB gain

Digital back end:

selects the eight odd 32 MHz channels from two 512 MHz inputs (V and H pol'n from one band)

RAEGE Workshop

Proof of Concept Demonstration

Westford (Massachusetts):

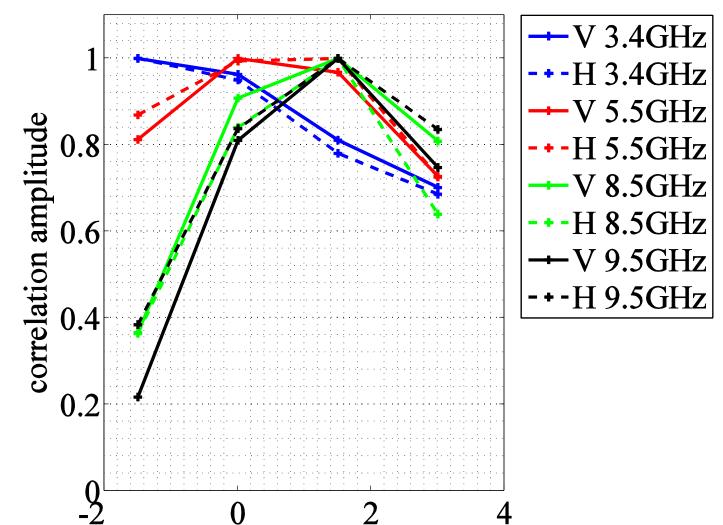
□ 18m prime focus antenna

□ S/X receiver must be removed to install Dewar

MV-3 (near Washington D.C.)

- □ 5m Cassegrain antenna
- □ Subreflector not matched to primary surface
- Signal chains are identical at both antennas
- All operations have been conducted from Haystack (except MV-3 antenna pointing)

Proof of Concept System


- Problems/challenges encountered □ RFI from TV at 500 MHz saturated LNAs ■ High-pass filter: > 3.1 GHz (cooled) Protection diodes on LNA leads Controlling four signal chains at two sites Scripts developed for setting frequencies, levels □ Phase cal processing in correlator • 5 MHz spacing and 32 MHz channel bandwidth
 - "Only software"; fixed

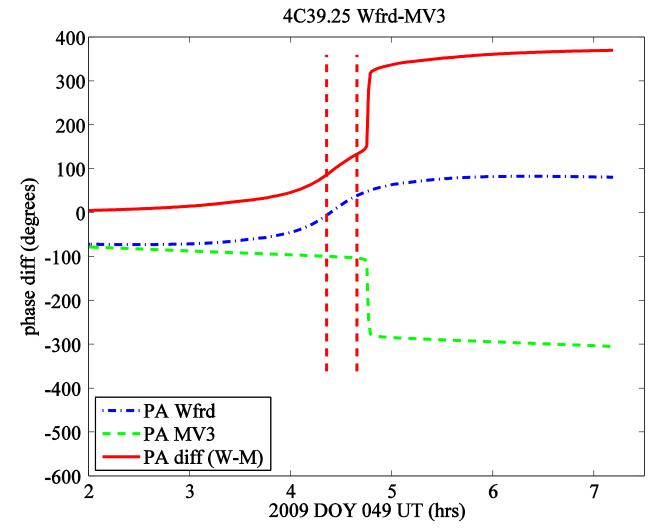
Recent Results

Westford focus setting measurement
 Test sessions

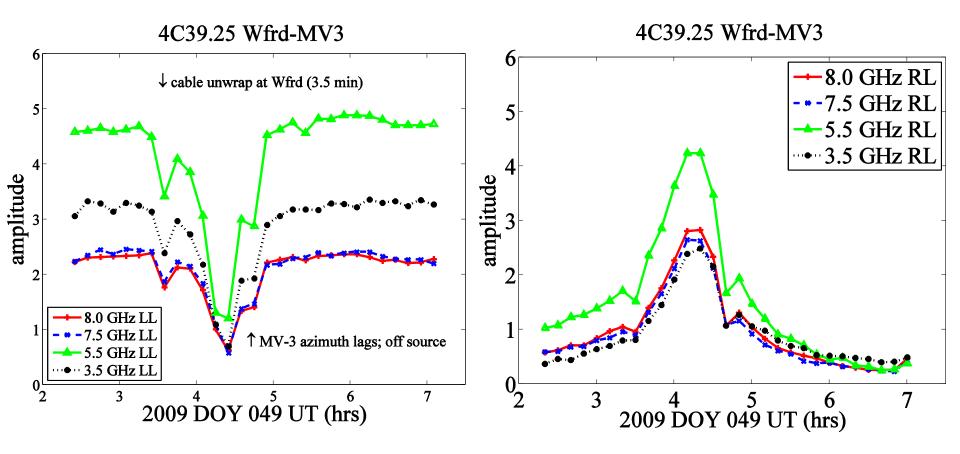
 Six hours with four bands identical frequencies
 Five hours with bands contiguous Five hours on 4C39.25 polarization test

Westford focus measurement

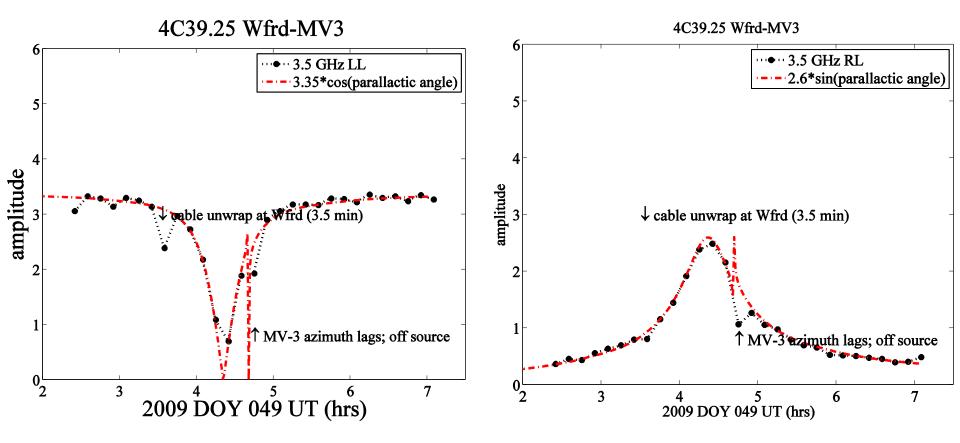
focus

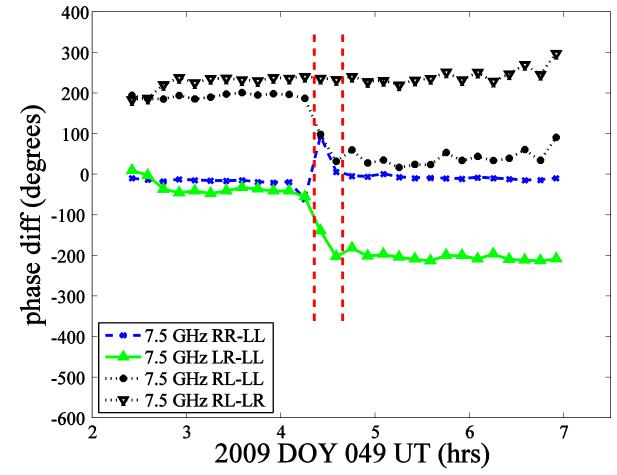

Polarization session

- Frequency coverage
 - □ 512 MHz bands
 - □ 3.5 GHz, 5.5 GHz, 7.5 GHz, and 8.0 GHz
- Source 4C39.25
 - □ Passes south of Westford and north of MV-3
 - \Box Differential parallactic angle: +6 to +279
- Signal chains identical at both antennas
- All operations conducted from Haystack (except MV-3 antenna pointing)

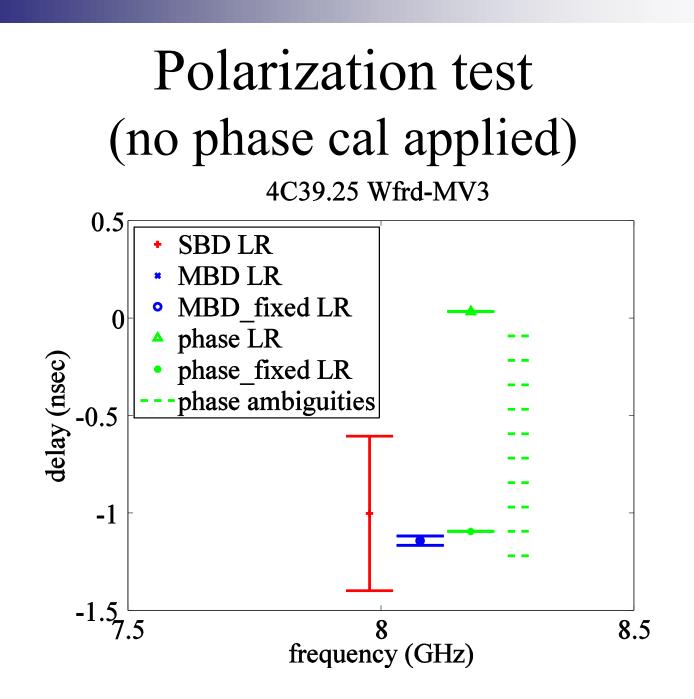

Results

■ Expected SNR ~250 \square BW = 256 MHz \Box Integration time = 570s \Box Correlated flux density = 10Jy \Box SEFDs = 3000Jy/100,000JY □ Observed SNR (max) 2009-040 freq (GHz) 3.5 5.5 7.5 8.0 140 200 120 120


Parallactic Angle Differences


Polarization test

Polarization test


Polarization Phase Differences (no phase cal applied) _{4C39.25 Wfrd-MV3}

Phase diff plot; table of RMS phase diff RR-LL etc

Polarization test (no phase cal applied)

4C39.25 Wfrd-MV3 4C39.25 Wfrd-MV3 15 15 SBD LR SBD RR **MBD LR** MBD RR * 10 10 MBD fixed RR MBD fixed LR 0 0 A phase RR phase LR -5 5 delay (nsec) delay (nsec) phase fixed RR phase fixed LR 0 0 -5 -5 -10 -10 -15 -15 2 8 10 2 8 10 4 0 6 0 4 6 frequency (GHz) frequency (GHz)

Proof of Concept System Status

	Current	Next
Feed	Lindgren	Eleven?
RF filter	>3.1 GHz	\geq 2.2 GHz
Phase cal	S/X pcal	"digital" pcal
DBE	DBE1(iBOB)	DBE2(ROACH)
Recorder	Mk5B+	Mk5C
Correlator	Mk4 (hardware)	Software (DiFX)

Broadband Delay Team

Bruce Whittier¹, Mike Titus¹, Jason SooHoo¹,
Dan Smythe¹, Alan Rogers¹, Jay Redmond²,
Mike Poirier¹, Arthur Niell¹, Chuck Kodak³,
Alan Hinton¹, Ed Himwich³, Skip Gordon²,
Mark Evangelista², Irv Diegel², Brian Corey¹,
Tom Clark³, and Chris Beaudoin ¹

¹ MIT Haystack Observatory ² HTSI, Inc ³ GSFC/NVI

Special thanks to Sandy Weinreb and Hamdi Mani

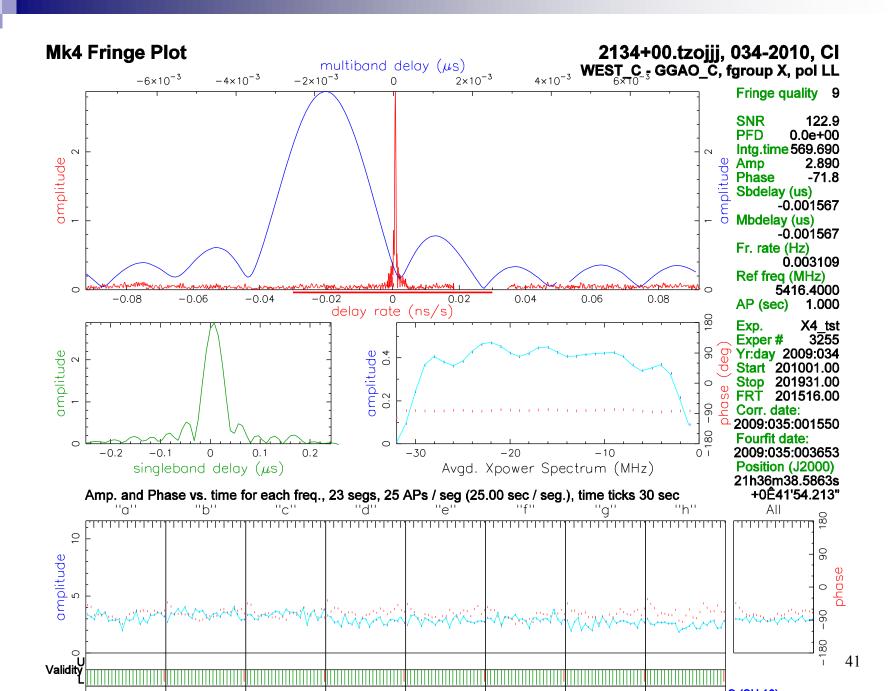
VLBI2010 Committee

Bill Petrachenko¹ (chair), Arthur Niell², Dirk Behrend³, Brian Corey², Johannes Böhm⁴, Patrick Charlot⁵, Arnaud Collioud⁵, John Gipson³,
Rüdiger Haas⁶, Thomas Hobiger⁷, Yasuhiro Koyama⁷, Dan MacMillan³,
Zinovy Malkin⁸, Tobias Nilsson⁶, Andrea Pany⁴, Gino Tuccari⁹,
Alan Whitney², Jörg Wresnik⁴

¹Natural Resources Canada, Canada
 ²Haystack Observatory, Massachusetts Institute of Technology, USA
 ³NVI, Inc./Goddard Space Flight Center, USA
 ⁴Institute of Geodesy and Geophysics, University of Technology, Vienna, Austria
 ⁵Bordeaux Observatory, France
 ⁶Onsala Space Observatory, Chalmers University of Technology, Sweden
 ⁷Kashima Space Research Center, NICT, Japan
 ⁸Pulkovo Observatory, Russia
 ⁹Radio Astronomy Institute, Italian National Astrophysical Institute, Italy

ŊP.

Benefits of Ku-Ka Band Reception


Advantages

 \Box Sources more compact

□ Possibility of observing as a co-pointing WVR

Ku to Ka Band Reception

- Disadvantages
 - □ Antenna tolerances more exacting
 - Surface accuracy
 - Pointing
 - □ Antenna sensitivity lower
 - Tsys higher
 - Atmosphere contribution higher
 - □ Fewer sources with same correlated flux density on a given baseline

VLBI2010 Broadband System

- Expected SNR for observed SEFDs (256 MHz,570s,10Jy,3KJy,100K) SNR = 0.8*sqrt(2*B*T)*Sc/sqrt(SEFD_Wf*SEFD_Gg)=250 2009-DOY040 freq 3.5 5.5 7.5 8.0 Observed SNR (max) 140 200 120 120
- 1. New equipment built especially for VLBI2010/uvlbi
 - 1. UDCs
 - 2. DBEs modified for dual polarization recording
 - 3. Digital PCAL generator

Westford focus setting measurement

Test sessions

Dewar (1)

- Feed (for initial operations of VLBI2010)
 2.2 to ~14 GHz (possibly to 36 GHz eventually)
 Phase center and beamwidth should be frequency independent (implies dual linear polarization now)
 Phase cal and noise cal
 - Signals split and injected to both polarizations following feed but before LNAs
 - □ Possibly external phase cal signal also for feed cal

Dewar (2)

RF filter (if necessary)

- □ TV at 500 MHz saturates unprotected LNAs
- \Box Cell phones about 2 GHz may be problem
- Communication satellites above 10 GHz (but positions known)
- \Box Other ?
- Low Noise Amplifiers (one for each pol'n)
 2.2 to ~14 GHz

Backend (control room) - 1

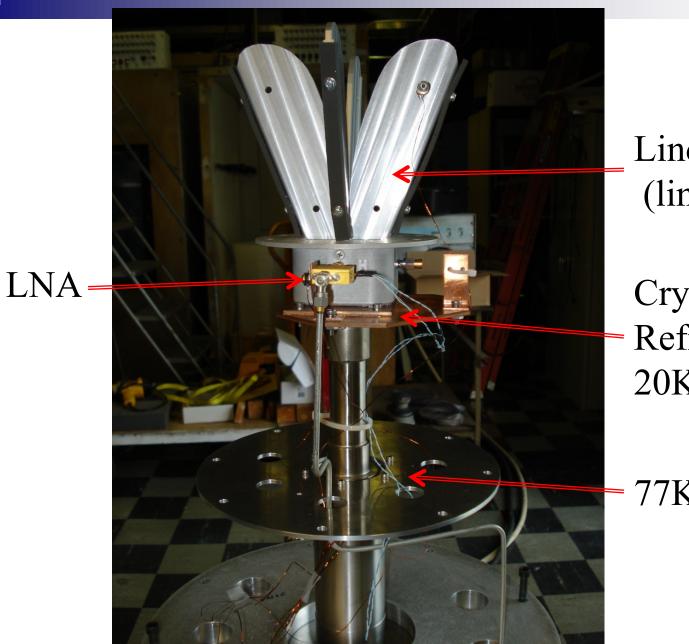
- RF carried to control room via optical fiber
- Optical fiber receivers, amplifiers, 4-way splitters (both polarizations) in one chassis
- RF is down-converted directly to video
 Alan Rogers' design also amplifies and NZ filters

Backend (control room) - 2

Digital Back End

□ Analog-to-digital conversion

- Poly phase filter and freq channel selection or
- □ Baseband converters (DBBC)
- Data storage

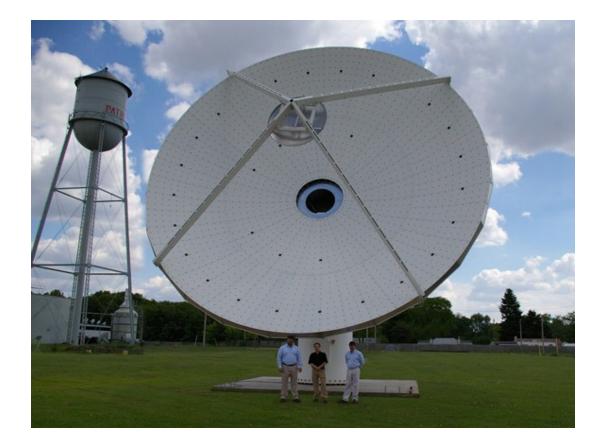

Directly to disks or

□ Network to intermediate storage or correlator

Real-time e-vlbi

ŊP.

47



Lindgren feed (linear pol'n)

Cryo Refrigerator 20K Station

77K Station

12 m Antenna

